

Developing a Model of Speech Production Using the Neural Engineering Framework and the Semantic Pointer Architecture Bernd J. Kröger¹, Trevor Bekolay², Peter Blouw^{2,3} & Terence C. Stewart⁴

¹Department for Phoniatrics, Pedaudiology, and Communication Disorders, RWTH Aachen University, Aachen, Germany

²Applied Brain Research, Waterloo, ON, Canada

³Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

⁴National Research Council of Canada, University of Waterloo Collaboration Centre, Waterloo, ON, Canada

Introduction

Goal of paper: Developing a *biologically inspired* large-scale model of speech production using the *Neural Engineering Framework* (NEF; Eliasmith 2013) and the *Semantic Pointer architecture* (SPA; Stewart & Eliasmith 2014)

Simulations

Concept: (i) Syllable oscillators of <u>varying</u> frequency -> speaking rate (ii) SAMU oscillators of <u>constant</u> frequency -> vocalic vs. consonantal gestures

Focus: Introducing a concept for modeling different speaking rates

- <u>Video 1</u>: simulation of three syllables
- <u>Video 2</u>: simulation of first syllable

Fig. 1. The large-scale model (Kröger & Bekolay 2019, Kröger et al. 2020) comprising seven modules; neuron buffers for neural representations of concepts (C_), lemmata (L_), phonol. forms (P_), motor plans (M_), gestures (G_), somatosensory (S_), auditory (A_), visual (V_) and orthographic states (O_). Arrows indicate neural transformations.

Fig. 4. simulation of the first syllable of a word: syllable oscillator triggering by premotor signals; syllable oscillator for /bas/; SAMU activation for vocalic and two consonantal gestures; for resulting articulator trajectories see Fig. 3.

Results of simulations: measuring articulator velocities

- Simulation of three-syllabic nonsense word: /baskumtip/ with:
- slow (f = 1.33 Hz), normal (f = 2 Hz) and fast (f = 3 Hz) speaking rate
- Measuring the resulting maximum articulator velocities (see Tab. 1) of four different types of SAMUs
- **Result:** Velocities vary from 0.7 to 1 (relative units; see Tab. 1) while speaking rate varies from 0.4 to 1 (relative units)
- Interpretation: Speaking with increasing rate is accomplished by increasing the temporal overlap of SAMUs while the *kinematic shape* of gestures remain stable (see Fujimura's 1992 *iceberg concept*)

abbrev.	movement direction & (dimension)		max v	max vel. (percentage)		
<u>SAMU</u>			slow	normal	fast	
aa_vow	lowering tongue body	(vertical)	100	100	100	
li_clos	closing the lips	(vertical)	72	88	100	
vph_open	lowering the velum	(vertical)	76	88	100	
gl_open	opening the glottis.	(horizontal)	70	94	100	

Fig. 2. The levels of the mental syllabary: motor plan level (syllable oscillators), SAMU level (gestures oscillators) and level for neural activation of muscle groups (neuron ensembles).

Simulation of a three-syllabic nonsense word

Tab. 1. Maximum movement velocities (rel. units) for different types of gestures

References

- Eliasmith, C. (2013). <u>How to Build a Brain: A Neural Architecture for Biological Cognition</u>, Oxford, New York: Oxford University Press.
- Fujimura, O. (1992). Phonology and phonetics a syllable-based model of articulatory organization. Journal of the Acoustical Society of Japan, 13, 39-48.
- Kröger, B.J., Bekolay, T. (2019). <u>Neural Modeling of Speech Processing and Speech Learning</u>. Cham: Springer Verlag.
- Kröger, B.J., Stille, C.M., Blouw, P., Bekolay, T., Stewart, T.C. (2020). Hierarchical sequencing and feedforward and feedback control mechanisms in speech production: a preliminary approach for modeling normal and disordered speech. *Frontiers in Computational Neuroscience, 14*, 573554, doi: 10.3389/fncom.2020. 573554
- Stewart, T. C., Eliasmith, C. (2014). Large-scale synthesis of functional spiking neural circuits. *Proceedings of the IEEE, 102*, 881-898.

More literature: see homepage of Bernd J. Kröger: <u>www.speechtrainer.eu</u>