Modeling force-field adaptation in speech motor control
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When a velocity-dependent forcefield is applied to the jaw
during production of the vowel sequence /ize/, humans
first show displacement of jaw trajectories, but adapt
over time to return to near baseline movements. When
the forcefield is removed, large are seen,
indicative of learning [1].
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What computational changes allow the speech motor
system to adapt to such dynamic perturbations?

As our basic model, we use a Task-Dynamics [2]

hierarchical feedback controller (below), with the addition

of a velocity-dependent force field applied to the jaw.
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including two task-level tract

constriction tasks (Palatal and Pharyngeal Constriction
Degree) and two mobility-level dimensions relating to jaw
movement (elevation and protrusion).
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The Task Dynamics model produces straight trajectories
in task space (bottom) and slightly curved jaw
trajectories (top). Without any additional components, the
Task Dynamics model cannot correct for externally-
applied jaw dynamics.

Jaw Elevation

normal trajectory

perturbed trajectory

Jaw Protrusion

Palatal CD

normal trajectory

perturbed trajectory

Pharyngeal CD

We explore three possible additions to the Task-
Dynamics model that may enable learning of
perturbed system dynamics.

Task Parameter Optimization

We iteratively optimize the gestural parameters of target
location (x,), mass (M) and stiffness (K) based on a cost
function with penalties for target achievement and effort.

Gestural Score

Xo, K, M

Task-to-mobility
transform a
) —
(inverse
kinematics)

T 3, a

Task State
Transform

(direct <
kinematics)

Jaw Pull

Plant
(lateral force)

Controller X i
(TD control)

I X, X

Optimizing palatal and pharyngeal constriction degree
targets (xy) minimally changes the trajectories.
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Optimizing stiffness (K,M) is minimally more effective.
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Optimizing all parameter simultaneously produces similar
results.
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Stiffness optimization (K, V1) has larger effects on
parameter values than target optimization (CD ., CD,),
likely due to the requirement that movements ended close
to the endpoint of unperturbed trajectories.
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Dynamic Movement Primitives

We iteratively optimize a time-varying forcing function, F(t),

that alters task-level dynamics based on a cost function
with penalties for target achievement and either effort or
trajectory curvature. Dynamic Movement Primitives [3] are
used to construct F(t).
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Optimizing for effort (mobility velocity) results in near-
complete compensation for the force field.
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Optimizing for trajectory curvature returns trajectories
closer to baseline.
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The forcing functions generated through the two methods
are very different.
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Jacobian Learning with LWR

We continuously update a learned mobility to task
transformation (a — x) using Locally Weighted
Regression. This mapping is used to generate the
Jacobian, J(a), whose inverse, J-'(a), is used in the task to

ity transformation (x — a).
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Updating J(a) minimally changes the trajectories, despite
changes in the Jacobian (bottom).
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