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Our long-term objective is to develop a theoretical 
foundation for the speech articulatory coordination 
(SAC) metric using Articulatory Phonology (AP), 
based on coupled oscillator models of syllable 
organization. 
 
In this work, we specifically aim to use AP-based 
simulations to demonstrate that: 

• SAC metric is sensitive to changes in gestural 
relative phase 

• Gestural competitive coupling and consistency 
induce changes in gestural relative phase 

Objectives 
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Articulatory Phonology, Gestural 
Coupling & Gestural Phase 
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•  Articulatory Phonology posits that gestures are the fundamental units of 
organization in spoken language (Saltzman & Munhall, 1989; Browman & Goldstein, 1992) 

•  Temporal patterning of speech gestures has been modeled using coupled 
oscillator models of coordination (e.g., Haken et al., 1985; Goldstein et al., 2009) 

•  Differences in coupling competition lead primarily to differences in the relative 
phase of speech gestures 
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Gestural Organization Simulations 
Three Conditions 

1.  fixed relative phase, randomly selected 
2.  fixed coupling competition, randomly selected 
3.  time-varying gestural coupling, random 

 
Simulation Parameters 

•  Four oscillators 
•  Bidirectional coupling 
•  Gestural frequency fixed, equal 

Measured Quantities 
•  SAC metric – score along first principal component of 

eigenspectrum variations in condition #1 
•  Synchronicity – root-mean-square deviation from max 

relative phase spacing 
•  Inconsistency – parameterized time-varying random 

noise in the coupling relationships 
•  Coupling competition – mean of coupling matrix values 
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Gestural Relative Phases Induce 
Changes in SAC Metric 
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Gestural Coupling Competition Induces 
Changes in Relative Phase & SAC Metric 
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Example Time Series 

Coupling Inconsistency Induces 
Nonlinear Changes in SAC Metric 
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Conclusion #1: The SAC metric is a promising measure of coordinative patterns in 
speech articulation, with demonstrated applications to neurological, cognitive and 
psychological health. 
 
Conclusion #2: This study provides the first evidence that the SAC metric is more 
than an advanced signal processing method, and has theoretical foundations in AP 
 
Conclusion #3: The SAC metric is sensitive to gestural relative phase, and can be 
seen as a measure of the synchronicity of speech gestures 
 
Conclusion #4: Gestural competitive coupling and consistency induce changes in 
gestural relative phase, and therefore represent a candidate causal explanation for 
variation in the SAC metric 
 
Question: Is there a method for directly predicting relative phases of weakly 
coupled oscillators? We are skeptical of our own coupling competition metric used 
here. 
 
Question: Does AP and coupled oscillator theory imply any other coordination 
metrics that might be more powerful that SAC? 

Conclusions & Open Questions 
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Speech Articulatory Coordination Metric 
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The SAC metric: (Williamson, 2019) 

•  Has shown promise as a measure of motor changes in a variety of health-
related neurological conditions 

•  Has been described as a measure of speech articulatory coordination 
•  Is primarily sensitive to differences in relative gestural phase and frequency 
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performance using the following three combinations: 1) Formant–
CPP, 2) CPP–HNR, and 3) delta MFCC. Figures 4–6 show 
example results at a single time scale for each of the feature 
combinations. Two speech recordings of the NW passage 

  
Figure 3. Diagram of cross-correlation analysis of articulatory 
coordination, as performed through formant-based features 
using channel-delay correlation matrices at multiple delay 
scales. A channel-delay matrix from one scale is shown. 

illustrate the typical effect of depression on these xcorr channel-
delay matrices and eigenspectra feature vectors. These recordings 
are of a non-depressed individual (BDI = 0) and a depressed 
individual (BDI = 35) from the Training set. The lower-left in 
each figure gives the eigenvalues for the normal and depressed 
subject  cases, while the lower-right plot in each figure shows the 
mean normalized eigenvalues for all Training sessions grouped 
into four different BDI score ranges: 0–8 (blue), 9–19 (cyan), 19–
28 (green), and 29–45 (red).  

For Formant–CPP xcorr features, vectors consist of 248 elements 
(4 channels, 4 time scales, 15 delays per scale, and 2 covariance 
features per scale).  For CPP–HNR xcorr features, vectors consist 
of 88 elements (2 channels, 4 scales, 15 delays per scale, top 20 
eigenvalues per scale, and 2 covariance features per scale). For 
delta MFCC xcorr features, the vectors consist of 968 elements 
(16 channels, 4 scales, 15 delays per scale, and 2 covariance 
features per scale). 

 
Figure 4. Formant–CPP xcorr features. Top: Channel-delay 
correlation matrices from NW passage for a normal and a 
depressed subject. Red denotes high and blue low (auto-) 
cross-correlation values. Bottom: Eigenvalues for these 
subjects (left) and average normalized eigenvalues for four 
BDI ranges in Training set (right). 

 
Figure 5. CPP–HNR xcorr features. Top: Channel-delay 
correlation matrices from NW passage for a normal and a 
depressed subject. Bottom: Eigenvalues for these subjects 
(left) and average normalized eigenvalues for four BDI ranges 
in Training set (right). 

 
Figure 6. Delta MFCC xcorr features. Top: Channel-delay 
correlation matrices from NW passage for a normal and a 
depressed subject. Bottom: Eigenvalues for these subjects 
(left) and average normalized eigenvalues for four BDI ranges 
in Training set (right). 

 

4.2 Facial Correlation Structure 
Facial coordination features are obtained by applying the xcorr 
technique to the FAU time series using the same parameters that 
were used to analyze the vocal-based features. Because of the 
30 Hz FAU frame rate, spacing for the four time scales 
correspond to time sampling in increments of approximately 
33 ms, 100 ms, 234 ms, and 500 ms. 

Figure 7 (top) shows example FAU channel-delay matrices at a 
single time scale from the same normal and depressed subjects 
that were used for illustration in Figures 4–6. These matrices are 
derived from the FS passage. 

As with Formant–CPP and CPP–HNR xcorr features, Figure 7 
(bottom-left) shows that the eigenspectra of the depressed subject 
contain less power in the small eigenvalues. This effect is 
observed across a spectrum of BDI scores in all 83 free-response 


