

Human Beatboxing : A preliminary study on temporal reduction.

Alexis Dehais Underdown¹, Paul Vignes¹, Lise Crevier Buchman^{1,2}, Didier Demolin¹ ¹Laboratoire de Phonétique et Phonologie, UMR 7018 CNRS-Sorbonne Nouvelle, ²Hôpital Foch, Univ. VSQ

Methods

INTRODUCTION

 \rightarrow Human Beatboxing (HBB) is imitation of musical the sonorities with the vocal tract. relies on \rightarrow HBB different articulatory skills compared to speech because it does not obey to linguistic constraints. \rightarrow In the present study we are presenting an experiment based on a speeding up task. \rightarrow Speech rate is known to be a factor of reduction affecting supralaryngeal gestures (Byrd & Tan 1996, Lindblom 1963, Ostry & Munhall 1985) and laryngeal gestures (Munhall & Löfqvist 1992) depending on prosodic the structure (Fougeron & Keating 1997). \rightarrow Duration is a major cue of reduction

- \rightarrow 1 Professional beatboxer
- →Recordings in an Anechoic chamber with a cardioid
 AKG C520 microphone (samp. Freq. = 44kHz)
 →12 Beatboxed patterns (BP) :
 - Each positions in the patterns were annotated from 1 to 9
- →Corpus : Metrical Structure

RESEARCH QUESTIONS

How does beatboxing rate affect sound duration and what is the beatboxer's strategy to speed up

- ➤ 5 repetitions of each BP at 3 speeds (90, 120, 150 Beat Per Minute) → 12 BP x 5 repetitions x 3 speeds = 180 BP
- \rightarrow Analysis of temporal reduction:
 - Sound duration (ms)
 - Acoustic phase duration (ms)
 - Silence between sounds (ms)
 - Pattern duration (ms)

Results

HYPOTHESIS

We expect that :
(1) the faster the production, the shorter sound duration
(2) affricates, trills and fricatives will shorten more than stops
(3) position in the beatboxed pattern influences sound reduction.

REFERENCES

Boersma, P. & Weenink, D. (2006).
Praat: doing phonetics by computer.
Version 6.0.21, recupéré le 25
Septembre 2016 sur
http://www.praat.org/.
Byrd, D., & Tan, C. C. (1996). Saying consonant clusters quickly. *Journal of Phonetics, 24(2), 263-282.*Fougeron, C., & Keating, P. A. (1997).
Articulatory strengthening at edges of prosodic domains. *The journal of the*

acoustical society of America, 101(6), 3728-3740.

Lindblom, B. (1963). Spectroraphic Study of Vowel Reduction. *Journal of the acoustical society of America*, 1773-1781.

Munhall, K., & Löfqvist, A. (1992). Gestural aggregation in speech: Laryngeal gestures. *Journal of Phonetics, 20(1)*, 111-126. Ostry, D. J., & Munhall, K. G. (1985). Control of rate and duration of speech movements. *The Journal of the Acoustical Society of America, 77(2)*, 640-648. > 97 tokens that shows sound and 9 \succ Stops & fricative reduction \rightarrow less changes (e.g. $[\uparrow I] \rightarrow [I]; [\downarrow p] \rightarrow [\downarrow B^I])$ \succ Position 4 = final position of the 1st reduction but they will not be analyzed here half However some sound do not we removed all tokens that did not \blacktriangleright Positions 9 = final position reduce depending on the position match the targeted sound. \succ Position 8 = anticipatory effect of \rightarrow Silences reduce most the final position ? > gestures are getting closer

Conclusion

- → Global reduction of pattern duration when speed increases
- \rightarrow Sound reduction + silence reduction when speed increases
- \succ Silence reduction = gestures are closer \rightarrow risks of articulatory overlap but few beatboxing errors
- Strategy = temporal reduction of gestures + same intergestural interval

→ More participants needed

Poster Template Designed by Genigraphics ©2012 1.800.790.4001 www.genigraphics.com